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Motivation

Ø Energetic particles perturb MHD 
stability ([1],[2])

Ø Kinetic-MHD instabilities induce
transport of energetic particles (EP) 
experimentally ([3],[4])

Ø Energetic particles are needed to 
sustain the plasma heat

Ø Nonlinear simulations needed to 
study transport ([5],[6],[7])

Internal kink mode structure

Fishbone oscillations on density | 2

[1]: Chen et al. 1984           [5] Fu et al. 2005     
[2] White et al. 1989           [5] Vlad et al. 2013
[3] McGuire et al.1983       [6] Pei et al. 2017
[4]Nave et al. 1991
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Kinetic-MHD resonant
processes

Resonant curves at fixed 𝑃"

Resonant condition for 
trapped particles

Resonant condition for 
passing particles

Ø Resonant processes possible at 
high energy with precessionnal
and bounce frequencies

Ø Resonances lie on planes in 
phase space

Ø At lower energy, the trapped
particles are mainly contributing
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Outline

ØI) Description and linear verification of the 
hybrid nonlinear code XTOR-K

ØII) Determination of the fishbone 𝛽$ thresholds
for the ITER 15 MA case

ØIII) Nonlinear study of the fishbone-induced EP 
transport for a circular ITER-like equilibrium
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Kinetic-MHD hybrid
code XTOR-K

Ø XTOR-K able to describe self-consistently kinetic-MHD modes during
their nonlinear phase

Ø Nonlinear simulations are mandatory to study the EP transport 

Ø Needs to be verified against linear theory

[1,2]

[1] H. Lütjens et al, JCP 2012
[2] D. Leblond, PhD thesis 2013
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XTOR-K Newton-
Krylov/Picard algorithm

Ø Full f hybrid codes require a fluid and a kinetic time step

Ø Kinetic time step needs to be at least ten times smaller than the ion 
gyration time

Ø Algorithm optimized to do few kinetic Picard iterations

Ø Scheme computable in acceptable time for 10'-10(	macro-particles 
thanks to a massive parallelization of the particle advance
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Kinetic-MHD linear theory

Kinetic-MHD energy principle

Instability kinetic energy MHD potential energy EP potential energy

MHD displacement Perturbed EP distribution function

@tf̃h � {h̃, Feq,h}� {Heq, f̃h} = 0

Vlasov equation

Heq =
1

2
m
⇥
v2k + µB

⇤

h̃ = Ze
⇥
�� vkAk

⇤

Equilibrium and perturbed
hamiltonians

[1] Chen et al, PRL 1983
[2] Coppi et al, PFB 1990
[3] White et al, PFB 1990
[4] Porcelli et al, POP 1994
[5] Brochard et al, JPCS 2018



|   8

fh,n! = �n · @Feq(J)/@J

! � n ·⌦ h̃n!f̃h =
X

n

f̃h,n!(J)e
i(n·↵�!t)

J̇ = �@Heq(J)

@↵
= 0

↵̇ =
@Heq(J)

@J
= ⌦

Angle-action formalism

Conjugate set of 
angle-action variables

Fourier transform in 
angle-action coordinates

Resonant Vlasov solution

Ø Coordinates linked to the charateristic
motion of charged particles in tokamaks

Ø (𝛼,,𝐽,,Ω,) describe gyration motion

Ø (𝛼0,𝐽0,Ω0) describe bounce motion

Ø (𝛼1,𝐽1,Ω1) describe precessional motion

Ø Angle-action is the natural set of variables to describe wave-particle resonance

[1] Kaufman, POF 1972
[2] Garbet, PhD thesis 1988 
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Computation of the kinetic
term

Feq,SD = � nh(r)
✓(v↵ � v)

v3 + v3c (r)

C�WK = �K,int + �K,res(⌦)

Ø Q computed in the thin orbit width
limit on circular flux surfaces

Ø Isotropic Slowing-Down distribution 
considered

Ø 𝑣±(	𝑃", 𝜇, Ω) ∈ ℂ, poles are not 
unique due to passing particles

Ø Resonant integral can be treated
analytically in specific situations

�K(⌦) =

Z
dP'dµ

Z E↵

0

Q(P', µ, E)

(v � v+)(v � v�)
dE
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Non-perturbative kinetic
dispersion relation

D(⌦, nh,0) = ⌦Ir(⌦)� i[�MHD + nh,0�K(⌦)] = 0

IR(⌦) =

8�

✓
⇤3/2+5

4

◆

⇤9/4�

✓
⇤3/2�1

4

◆ ⇤ = �i⌦⇤⌧A(S/s
2
0)

1/3

Resistive contribution Bulk MHD contribution

Computed for specific equilibria
through the combined codes 

CHEASE / XTOR-2F
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Specificities of the linear
model

Ø Kinetic term takes into account both trapped and passing particles contributions

Ø Non-resonant kinetic interchange term kept in the computation

Ø Passing particles contribution is not negligeable



|  12

Thin orbit width assumption
correct up to E  = 1MeV

Ø The linear model use a thin orbit width approximation

Ø For energies lower than 1 MeV, linear model particle frequencies are 
correct

Ø Linear verification possible for particle energy below 1 MeV
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Linear model limited at high 
energies

Ø At high energies (3.5MeV), thin orbit width approximation breaks down

Ø Linear verification cannot be performed at high energies
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Constant MHD contribution 
assumption valid at 1MeV

Ø The MHD bulk contribution can only be constant for all 𝑛$,9 if and 
only if the metric is weakly affected by EP, with

Ø For intermediate energy EP (1MeV), the metric is weakly affected

Ø EP at peak energy of 1 MeV suitable for linear verification

�
p,h

<< �
p,tot
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Linear model limited at low
energies

Ø For low energy EP (100 keV), high density are required to trigger the fishbone
instability, which modifies the metric significantly

Ø 𝛿𝑊<=> is then significantly modified as 𝑛$,9 is increased

Ø Linear verification cannot be performed at low energies
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XTOR-K verified by
Linear theory

Ø Linear theory agrees reasonably well with XTOR-K

Ø Discrepancies arise at higher EP density

Ø At these densities, differences between XTOR-K and the linear model are 
enlarged, which explains discrepancies
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Matching phase-space
resonant zones

Ø Similar zones of precessionnal resonance are found with nonlinear
simulations with XTOR-K

Ø Energy exchange noisy because the end of the linear phase is only a couple 
of kink rotation periods

Ø Discrepancies in phase space positions can be due to the thin orbit width
assumption

Linear model 
resonance
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Outline

ØI) Description and linear verification of the 
hybrid nonlinear code XTOR-K

ØII) Determination of the fishbone 𝛽$ thresholds
for the ITER 15 MA case

ØIII) Nonlinear study of the fishbone-induced EP 
transport for a circular ITER-like equilibrium
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Linear simulation of the ITER 
15 MA case with XTOR-K

Up-down symmetric
geometry Flat bulk density profile

Flat q profile Slowing-Down distribution

Ø Parametric study of 
the ITER 15 MA case

Ø Realistic geometry
and profiles similar to 
those from integrated
modelling codes

Ø 𝑛?9= 1009 𝑚A1

Ø 𝑇?9= 𝑇C9= 23 keV

Ø Peaked EP density
profile
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ITER 15 MA could be
fishbone-unstable

Ø For 𝑞9 = 0.95, 0.9, threshold for the 
fishbone instability is around 𝑝$	/	𝑝KLK = 
5-8%

Ø ITER is unstable against fishbone
instability for specific equilibria

Ø Differences with [1] can be due to 
different EP density profiles and q profiles

Ø Several equilibria need to be tested to 
complete this study, with different 𝑞9

[1] G. Fu et al, POP 2006
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Outline

ØI) Description and linear verification of the 
hybrid nonlinear code XTOR-K

ØII) Determination of the fishbone 𝛽$ thresholds
for the ITER 15 MA case

ØIII) Nonlinear study of the fishbone-induced EP 
transport for a circular ITER-like equilibrium
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Nonlinear simulation of 
the fishbone instability

Time evolution of the rotation frequency

Time evolution of the kinetic energy

Ø A first non-linear simulation has 
been performed for a circular
equilibrium, peak energy at 1 
MeV

Ø Fishbone oscillations are 
observed before reconnection
due to the kink instability

Ø Strong chirping is associated
with the fishbone oscillations, 
as well as mode saturation

Ø Instability rotation goes to zero
in the kink phase
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Evidences for 
fishbone oscillations

Beginning
fishbone phase

Saturation
fishbone phase

End
fishbone phase Kink phase

𝒕𝝉𝑨 = 𝟕𝟕𝟓𝟕 𝒕𝝉𝑨 = 𝟗𝟖𝟓𝟑 𝒕𝝉𝑨 = 𝟏𝟑𝟔𝟏𝟒 𝒕𝝉𝑨 = 𝟏𝟓𝟖𝟎𝟏
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Trajectory in the poloidal plane

Variation of the canonical toroidal momentum

Variation of energy

Variation of the perturbed invariant

Typical evolution of a 
resonant particle
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Interaction of a resonant particle
with the kinetic-MHD mode

Ø Resonant particles move radially
outward

Ø Transport induced by particle
mode detrapping, due to wave-
particle detuning

Ø Relationship between detrapping
and chirping to be investigated



Resonant EP density profile 
flattens
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Significant radial 
transport of resonant EP

Ø In resonant regions, 
transport of EP is
substancial (50%)

Ø Resonant region are 
very dependent of 
the imposed EP 
distribution
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Ø Overall EP transport in core plasma around 5% in the fishbone phase

Ø EP are transported to q=1

Ø Fast mode chirping may prevent to transport large amount of EP

Weak transport of all 
particles
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What transport for more 
ITER realistic equilibria ?

Ø The magnitude of the EP transport is directly related to position of resonances
onto EP distribution

Ø For more ITER realistic equilibria, precessional resonance spans wider
portions of the EP distribution

Ø Nonlinear simulation with more realistic ITER equilibrium needed
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Conclusion

ØNonlinear hybrid code XTOR-K verified against
analytical theory

Ø ITER found to be unstable against fishbone
instability for specific equilibria

ØFishbone induced transport of EP in nonlinear
phase found to be weak for a specific equilibrium
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Perspectives

Ø Linear analysis of fishbone thresholds on ITER to 
be extended for q0 > 1

ØMore complete Kinetic Poincaré diagnostics are 
implemented to understand the nonlinear interplay
between mode chirping and EP transport

ØNonlinear results need to be generalized for more 
ITER realistic equilibria, closer to the fishbone
threshold


